GUIA DO ENSINO


Vai ai contenuti

Menu principale:


EXPRESSÕES ALGÉBRICAS

MATÉRIAS

O uso das expressões algébricas
No cotidiano, muitas vezes usamos expressões sem perceber que as mesmas representam expressões algébricas ou numéricas.

Numa papelaria, quando calculamos o preço de um caderno somado ao preço de duas canetas, usamos expressões como 1x+2y, onde x representa o preço do caderno e y o preço de cada caneta.

Num colégio, ao comprar um lanche, somamos o preço de um refrigerante com o preço de um salgado, usando expressoes do tipo 1x+1y onde x representa o preço do salgado e y o preço do refrigerante.

Usamos a subtração para saber o valor do troco. Por exemplo, se V é o valor total de dinheiro disponível e T é o valor do troco, então temos uma expresão algébrica do tipo V-(1x+1y)=T.

As expressões algébricas são encontradas muitas vezes em fórmulas matemáticas. Por exemplo, no cálculo de áreas de retângulos, triângulos e outras figuras planas.


Elementos históricos

Na Antiguidade, as letras foram pouco usadas na representação de números e relações. De acordo com fontes históricas, os gregos Euclides e Aristóteles (322-384 a.C), usaram as letras para representar números. A partir do século XIII o matemático italiano Leonardo de Pisa (Fibonacci), que escreveu o livro sobre
Liber Abaci (o livro do ábaco) sobre a arte de
calcular, observamos alguns cálculos algébricos.

O grande uso de letras para resumir mais racionalmente o cálculo algébrico passou a ser estudado pelo matemático alemão Stifel (1486-1567), pelos matemáticos italianos Germano (1501-1576) e Bombelli (autor de
Álgebra publicada em 1572), porém, foi com o matemático francês François Viéte (1540-1603), que introduziu o uso ordenado de letras nas analogias matemáticas, quando desenvolveu o estudo do cálculo algébrico.

Expressões Numéricas

São expressões matemáticas que envolvem operações com números. Por exemplo:

a = 7+5+4
b = 5+20-87
c = (6+8)-10
d = (5×4)+15


Expressões algébricas

São expressões matemáticas que apresentam letras e podem conter números. São também denominadas expressões literais. Por exemplo:

A = 2a+7b
B = (3c+4)-5
C = 23c+4

As letras nas expressões são chamadas variáveis o que significa que o valor de cada letra pode ser substituída por um valor numérico.

Prioridade das operações numa expressão algébrica

Nas operações em uma expressão algébrica, devemos obedecer a seguinte ordem:

1. Potenciação ou Radiciação

2. Multiplicação ou Divisão

3. Adição ou Subtração

Observações quanto à prioridade:

1. Antes de cada uma das três operações citadas, deve-se realizar a operação que estiver dentro dos parênteses, colchetes ou chaves.
2. A multiplicação pode ser indicada por × ou por um ponto · ou às vezes sem sinal, desde que fique clara a intenção da expressão.
3. Muitas vezes devemos utilizar parênteses quando substituímos variáveis por valores negativos.

Exemplos:
1. Consideremos P=2A+10 e tomemos A=5. Assim

P = 2.5+10 = 10+10 = 20

Aqui A é a variável da expressão, 5 é o valor numérico da variável e 20 é o valor numérico da expressão indicada por P. Observe que ao mudar o valor de A para 9, teremos:

A = 2.9 + 10 = 18 + 10 = 28

Se A=9, o valor numérico de P=2A+10 é igual a 28.

2. Seja X=4A+2+B-7 e tomemos A=5 e B=7. Assim:

X = 4.5+2+7-7 = 20+2-0 = 22

Se A=5 e B=7, o valor numérico de X=4A+2+B-7, muda para 22.

3. Seja Y=18-C+9+D+8C, onde C= -2 e D=1. Então:

Y = 18-(-2)+9+1+8(-2) = 18+2+9+1-16 = 30-16 = 14


Se C=-2 e D=1, o valor numérico de Y=18-C+9+D+8C, é 14.

Conclusão: O valor numérico de uma expressão algébrica é o valor obtido na expressão quando substituímos a variável por um valor numérico.


Exemplos:

1. Um triângulo eqüilátero possui os três lados com mesma medida. Calcular o perímetro de um triângulo equilátero cujo lado mede 5 cm, sabendo-se que o perímetro de um triangulo equilátero pode ser representado por uma expressão algébrica da forma: P=a+a+a=3a. Substituindo a=5cm nesta expressão, obtemos P=3×5cm=15cm.

2. Para obter a área do quadrado cujo lado mede 7cm, devemos usar a expressão algébrica para a área do quadrado de lado L que é A=L×L=L². Assim, se L=7cm, então A=7×7=49cm².

Observação: Mudando o valor do lado para L=8cm, o valor da área mudará para A=8×8=64cm².
3. Escreva expressões algébricas para representar o perímetro de cada uma das figuras abaixo:





4. Se a letra y representa um número natural, escreva a expressão algébrica que representa cada um dos seguintes fatos:
a) O dobro desse número.
b) O sucessor desse número.
c) O antecessor desse número (se existir).
d) Um terço do número somado com seu sucessor.

5. Como caso particular do exercício anterior, tome y=9 e calcule o valor numérico:

a) do dobro de y
b) do sucessor de y
c) do antecessor de y
d) da terça parte de y somado com o sucessor de y

6. Calcular a área do trapézio ilustrado na figura, sabendo-se que esta área pode ser calculada pela expressão algébrica A=(B+b)×h/2, onde B é a medida da base maior, b é a medida da base menor e h é a medida da altura.


Monômios e polinômios

São expressões matemáticas especiais envolvendo valores numéricos e literais, onde podem aparecer somente operações de adição, subtração ou multiplicação. Os principais tipos são apresentados na tabela:

Nome No.termos Exemplo
monômio um m(x,y) = 3 xy
binômio dois b(x,y) = 6 x²y - 7y
trinômio três f(x) = a x² + bx + c
polinômio vários p(x)=ax+ax+ax+...+ax+a


Identificação das expressões algébricas

Com muita frequência, as expressões algébricas aparecem na forma:

3x²y

onde se observa que ela depende das variáveis literais x e y, mas é importante identificá-las com nomes como:

p(x,y) = 3x²y

para deixar claro que esta é uma expressão algébrica que depende das variáveis x e y.

Esta forma de notação é muito útil e nos leva ao conceito de função de várias variáveis que é um dos conceitos mais importantes da Matemática.


Valor numérico de uma expressão algébrica identificada

É o valor obtido para a expressão, ao substituir as variáveis literais por valores numéricos.
Exemplo:
Tomando p(x,y)=3x²y, então para x=7 e y=2 temos que:

p(7,2) = 3 × 7² × 2 = 294

Se alterarmos os valores de x e de y para x=-1 e y=5, teremos outro valor numérico:

p(-1,5) = 3 × (-1)² × 5 = 3 × 5 = 15

mas dependendo da mudança de x e de y, poderíamos ter o mesmo valor numérico que antes. Se x=-7 e y=2, teremos:

p(7,2) = 3 × (-7)² × 2 = 294


A regra dos sinais (multiplicação ou divisão)

(+1) x (+1) = +1 (+1) ÷ (+1) = +1
(+1) x (-1) = -1 (+1) ÷ (-1) = -1
(-1) x (+1) = -1 (-1) ÷ (+1) = -1
(-1) x (-1) = +1 (-1) ÷ (-1) = +1


Regras de potenciação

Para todos os números reais x e y diferentes de zero, e, m e n números inteiros, tem-se que:



Eliminação de parênteses em Monômios

Para eliminar os parênteses em uma expressão algébrica, deve-se multiplicar o sinal que está fora (e antes) dos parênteses pelo sinal que está dentro (e antes) dos parênteses com o uso da regra dos sinais. Se o monômio não tem sinal, o sinal é o positivo. Se o monômio tem o sinal +, o sinal é o positivo.

Exemplos:

A = -(4x)+(-7x) = -4x-7x = -11x
B = -(4x)+(+7x) = -4x+7x = 3x
C = +(4x)+(-7x) = 4x-7x = - 3x
D = +(4x)+(+7x) = 4x+7x = 11x



Operações com expressões algébricas de Monômios

1 . Adição ou Subtração de Monômios

Para somar ou subtrair de monômios, devemos primeiramente eliminar os parênteses e depois realizar as operações.
Exemplos:

A = -(4x)+(-7x) = -4x-7x = -11x
B = -(4x)+(+7x) = -4x+7x = 3x
C = +(4x)+(-7x) = 4x-7x = -3x
D = +(4x)+(+7x) = 4x+7x = 11x

2. Multiplicação de Monômios

Para multiplicar monômios, deve-se primeiramente multiplicar os valores numéricos observando com muito cuidado a regra de multiplicação dos sinais, multiplicar as potências literais de mesma base e escrever a resposta de uma forma simplificada:
Exemplos:

A = -(4x²y).(-2xy) = +8x³y²

B = -(4x²y).(+2xy) = -8x³y²

C = +(4x²y).(-2xy) = -8x³y²

D = +(4x²y).(+2xy) = +8x³y²

3. Divisão de Monômios

Para dividir monômios, deve-se primeiramente dividir os valores numéricos observando com muito cuidado a regra de divisão dos sinais, dividir as potências literais de mesma base e escrever a resposta de uma forma simplificada:
Exemplos:

A = -(4x²y)÷(-2xy) = 2x

B = -(4x²y)÷(+2xy) = -2x

C = +(4x²y)÷(-2xy) = -2x

D = +(4x²y)÷(+2xy) = 2x


4. Potenciação de Monômios

Para realizar a potenciação de um monômio, deve-se primeiramente realizar a potenciação do valor numérico levando em consideração o sinal, tomar as potências literais e escrever a resposta de uma forma simplificada:
Exemplos:

A =(+4x²y)³= 4³ x²y x²y ²y = 256 x y³

B =(-4x²y)³ = -4³x²y x²y x²y = -256x y³


Alguns Produtos notáveis

No link Produtos Notáveis, existem outros trinta (30) produtos notáveis importantes.
Quadrado da soma de dois termos
Sabemos que x²=x.x, y²=y.y, mas não é verdade que

x² + y² = (x+y)²

a menos que um dos dois termos seja nulo. Este é um erro muito comum, mas o correto é:

(x+y)² = x² + 2xy + y²

Isto significa que o quadrado da soma de dois números sem sempre é igual à soma dos quadrados desses números.
Existe um algoritmo matemático que permite obter o quadrado da soma de x e y, e este algoritmo é semelhante àquele que permite obter o quadrado de um número com dois dígitos. Por exemplo, o número 13 pode ser decomposto em 10+3:



Assim temos que o quadrado da soma de dois termos x e y, é a soma do quadrado do primeiro termo com o quadrado do segundo termo e com o dobro do produto do primeiro termo pelo segundo termo.
Em resumo:

(x+y)² = x² + 2xy + y²

Exemplos:

(x+8)² = x²+2.x.8+8² = x²+16x+64
(3k+y)² = (3k)²+2.3k.y+y² = 9k²+6ky+y²
(1+x/5)² = 1+ 2x/5 +x²/25


Exercícios: Desenvolver as expressões:
(a+8)² =

(4y+2)² =

(9k/8 +3)² =

Pensando um pouco:

1. Se (x+7)²=x²+[ ]+49, qual é o termo que deve ser colocado no lugar de [ ]?

2. Se (5a+[ ])² = 25a²+30a+[ ], quais são os termos que devem ser colocados nos lugares de [ ]?

3. Se ([ ]+9)² = x²+[ ]+81, quais são os termos que devem ser colocados nos lugares de [ ]?

3. Se (4b+[ ])² = l6b²+36b+[ ], substitua os [ ] por algo coerente.

4. Se (c+8)²=c²+[ ]+[ ], substitua os [ ] por algo coerente.


2. Quadrado da diferença de dois termos

Como um caso particular da situação anterior, o quadrado da diferença de x e y é igual ao quadrado de x somado com o quadrado de y menos duas vezes xy. Resumindo:
(x-y)² = x² - 2xy + y²


Exemplos:

(x-4)² = x²-2.x.4+4² = x²-8x+16
(9-k)² = 9²-2.9.k+k² = 81-18k+k²
(2/y -x)² = (2/y)²-2.(2/y).x+x²

Exercícios: Complete o que falta.

(5x-9)² =[ ]
(k-6s)² =[ ]
(p-[ ])² = p²-10p+[ ]


3 . Produto da soma pela diferença de dois termos

Vamos utilizar o mesmo algoritmo já usado para o produto da soma de dois termos.




Em geral, o produto da soma de x e y pela diferença entre x e y é igual ao quadrado de x menos o quadrado de y.

(x+y)(x-y) = x² - y²

Exemplos:

(x+2)(x-2) = x²-2x+2x-4 = x²-4
(g-8)(g+8) = g²-8g+8g-64 = g²-64
(k-20)(k+20) = k²-400
(9-z)(9+z) = 81-z²


Exercícios: Complete as expressões:

(6-m)(6+m) =
(b+6)(b-6) =
(6+b)(b-6) =
(6+b)(6-b) =
(100-u)(100+u) =
(u-100)(100+u) =


fonte:pessoal.sercomtel



CopyRight ®2009 - BY TUDOOK.COM | contato@tudook.com

Torna ai contenuti | Torna al menu